Hosted by IDTechEx
Advanced Batteries & Energy Storage Research
Posted on June 25, 2019 by  & 

New battery design for the 5G world

Researchers at Nokia Bell Labs and AMBER, the SFI Centre for Advanced Materials and BioEngineering Research hosted at Trinity College Dublin, announced they have created a new, innovative formula for battery composition that makes batteries more powerful by packing 2.5 times the battery life than anything currently on the market. As the world transitions to 5G, ushering in a new era of consumer and industrial Internet of Things (everything from wearable technologies, pervasive sensors, to industrial robots), this new, game-changing battery design has the potential to help power the connected world of the future.
 
The increasing power requirements of connected devices such as smartphones, drones, electric cars and robots necessitates greater battery performance for both new applications as well as longer battery lifetimes. The new battery design also has far-reaching implications for 4G and 5G networks where conventional power may not be available for network equipment, or where emergency backup battery systems are essential to keep systems running. For more information see the IDTechEx report on 5G Technology, Market and Forecasts 2019-2029.
 
 
"By packing more energy into a smaller space, this new battery technology will have a profound impact on 5G and the entire networked world," said Paul King, one of the lead investigators on the project and Member of the Technical Staff, Nokia Bell Labs. "The combination of Nokia Bell Labs industry and device knowledge and AMBER's materials science expertise allowed us to tackle an extremely difficult problem involving multiple disciplines. Our results were achieved through the deeply collaborative mode in which we work, underscoring the value of engaging with AMBER as part of our global research strategy."
 
"The significant advancement in battery technology outlined in this research is a testament to the strong collaboration between AMBER and Nokia Bell Labs. Bringing scientists together from industry and academia with a common research goal has resulted in a substantial scientific breakthrough," said Dr. Lorraine Byrne, AMBER Executive Director. "AMBER's partnership with Nokia Bell Labs through their Distinguished Academic Partners Program has been a hugely positive experience and clearly illustrates the benefits of industry-academic engagements. I look forward to AMBER's collaboration with Nokia Bell Labs continuing to break new boundaries in science creating impact for society."
 
An additional benefit to this new technology is its potential to improve the performance of large-scale energy grids powered by renewable energy. The demand for reliable power relies on storage technologies, such as the battery technology described here, to manage the high fluctuation in energy generation in today's wind and solar renewable technologies. A new study from Wood Mackenzie shows that the energy storage in 100 percent renewable systems will likely be 25 times higher as compared to today's systems. This will pose issues as the need for efficient, fast charging and compact energy storage becomes even more imperative.
 
 
A patent has been filed to protect this new technology design and help bring it to the marketplace. A study discussing the battery research performed by Nokia Bell Labs and AMBER has been published in Nature Energy* a leading international science journal.
 
Nokia Bell Labs has been collaborating with AMBER as part of the Nokia Bell Labs Distinguished Academic Partners Program. The program brings together Nokia Bell Labs researchers with the best and brightest minds at the world's top universities to solve future human needs, transform human existence, and deliver disruptive innovations.
 
Source: Nokia
Top image: Pixabay
Learn more at the next leading event on the topic: Energy Storage Innovations USA 2019 External Link on 20 - 21 Nov 2019 at Santa Clara Convention Center, CA, USA hosted by IDTechEx.
More IDTechEx Journals